Mean Value Theorem Formula Equation | Mean Value Theorem For Integrals, Class 12 Math Notes Study Material Download Free PDF

In mathematics, the mean value theorem states, roughly, that given a planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints.

The Mean Value Theorem states that if f(x) is continuous on [a, b] and differentiable on (a, b) then there exists a number c between a and b such that:

\[\large {f}'(c)=\frac{f(b)-f(a)}{b-a}\]

Solved Example

Question: Evaluate f(x) = x+ 2 in the interval [1, 2] using mean value theorem.

Solution:

Given function is:
f(x) = x+ 2

Interval is [1, 2].

i.e. a = 1, b = 2

Mean value theorem is given by,

f'(c) =

\(\begin{array}{l}\frac{f(b)-f(a)}{b-a}\end{array} \)

f(b) = f(2) = 22 + 2 = 6

f(a) = f(1) = 12 + 2 = 3

So, f'(c) =

\(\begin{array}{l}\frac{6-3}{2-1}\end{array} \)

= 3


📌 Related Posts:
Matrices Types, Properties:Row, Column, Zero or Null, Singleton, Horizontal, Vertical, Square, Diagonal, Scalar, Unit or Identity Matrix, Equal Matrices, Triangular, Singular & Non-Singular Matrix, Symmetric & Skew Symmetric Matrices, Hermitian & Skew-Hermitian Matrices, Idempotent, Nilpotent, Periodic, Involutory Matrix | Probability Bernoulli Trial & Binomial Distribution of Random Variables | Class 12 Math Notes Study Material Download Free PDF | Symmetric & Skew Symmetric Matrix-Properties, Solved Examples | Integration by Substitution Method – Formula, Examples & Questions, Class 12 Math Notes Study Material Download Free PDF | Types of Vectors | Zero Vector, Unit Vector, Position Vector, Co-initial Vector, Like & Unlike Vectors, Co-planar Vectors, Collinear Vectors, Equal Vectors, Displacement Vector, Negative of a Vector


RELATED POST