Trigonometric Ratios of 30°, 45°, 60° Explained Geometrically with MCQS, Solved Examples


📌 Related Posts:
Trigonometry Class 10 Solved Problems and Examples, Prove Identities by Given Angle | Trigonometric Ratios | Definitions, Formulas & Identities, Solved Examples | Trigonometric Identities Class 10 – Solved Problems & Examples | Trigonometry JEE Foundation Important Solved Problems and Examples | Trigonometric Ratios NTSE JEE Foundation Important Solved Examples and Problems


📚 Trigonometric Ratios of 45°, 60°, and 30° (Geometrically Explained) for Class 10 Math

Trigonometric ratios are the relationships between the sides of a right-angled triangle and its angles. Let’s derive the exact values of trigonometric ratios for 45°, 60°, and 30° using basic geometry and Pythagoras’ Theorem.


🔺 TRIGONOMETRIC RATIOS OF 45° for Class 10 Math

🔧 Construction:

Take a right-angled triangle ΔABC with:

  • ∠B = 90°
  • ∠A = ∠C = 45° (Since the sum of angles in triangle is 180°)

As ∠A = ∠C, the triangle is isosceles with:

  • AB = BC = a units (equal sides)
  • AC = hypotenuse
Trigonometric ratios of 45°
TRIGONOMETRIC RATIOS OF 45°

Using Pythagoras’ Theorem:

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2a^2} = a\sqrt{2}$$

🧮 T-Ratios of 45°:

$$\sin 45^\circ = \frac{BC}{AC} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}} $$

$$\cos 45^\circ = \frac{AB}{AC} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\tan 45^\circ = \frac{BC}{AB} = \frac{a}{a} = 1 $$

$$\sec 45^\circ = \frac{1}{\cos 45^\circ} = \sqrt{2} $$

$$\mathrm{cosec} \:45^\circ = \frac{1}{\sin 45^\circ} = \sqrt{2} $$

$$\cot 45^\circ = \frac{1}{\tan 45^\circ} = 1$$


🔺 TRIGONOMETRIC RATIOS OF 60° AND 30° for Class 10 Math

🔧 Construction:

Consider an equilateral triangle ΔABC:

  • Each side = 2a
  • Each angle = 60°

Draw a perpendicular AD from vertex A to base BC.

Then:

  • AD ⊥ BC
  • BD = DC = a (since it bisects BC)
  • ∠ADB = 90°
  • ∠BAD = 30°, ∠DAC = 30°, ∠ADB = 90°, ∠DAB = 60°
Trigonometric ratios of 60° and 30°
TRIGONOMETRIC RATIOS OF 60° AND 30°

Using Pythagoras in ΔADB:

$$AD = \sqrt{AB^2 – BD^2} = \sqrt{(2a)^2 – a^2} = \sqrt{4a^2 – a^2} = \sqrt{3a^2} = a\sqrt{3}$$


✅ T-Ratios of 60° (from ΔADB):

  • Base = BD = a
  • Height = AD = $a\sqrt{3}$
  • Hypotenuse = AB = 2a

$$\sin 60^\circ = \frac{AD}{AB} = \frac{a\sqrt{3}}{2a} = \frac{\sqrt{3}}{2} $$

$$\cos 60^\circ = \frac{BD}{AB} = \frac{a}{2a} = \frac{1}{2} $$

$$\tan 60^\circ = \frac{AD}{BD} = \frac{a\sqrt{3}}{a} = \sqrt{3} $$

$$\sec 60^\circ = \frac{1}{\cos 60^\circ} = 2 $$

$$\mathrm{cosec} \: 60^\circ = \frac{1}{\sin 60^\circ} = \frac{2}{\sqrt{3}} $$

$$\cot 60^\circ = \frac{1}{\tan 60^\circ} = \frac{1}{\sqrt{3}}$$


✅ T-Ratios of 30° (from the same ΔADB):

  • Base = AD = $a\sqrt{3}$
  • Height = BD = a
  • Hypotenuse = AB = 2a

$$\sin 30^\circ = \frac{BD}{AB} = \frac{a}{2a} = \frac{1}{2}$$

$$\cos 30^\circ = \frac{AD}{AB} = \frac{a\sqrt{3}}{2a} = \frac{\sqrt{3}}{2}$$

$$\tan 30^\circ = \frac{BD}{AD} = \frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\sec 30^\circ = \frac{1}{\cos 30^\circ} = \frac{2}{\sqrt{3}}$$

$$\mathrm{cosec} \: 30^\circ = \frac{1}{\sin 30^\circ} = 2 $$

$$\cot 30^\circ = \frac{1}{\tan 30^\circ} = \sqrt{3}$$


🧠 Axioms of Trigonometric Ratios

📍 For 0°:

We define:

  • sin 0° = 0
  • cos 0° = 1
  • tan 0° = 0
  • sec 0° = 1
    cosec 0° and cot 0° are undefined

📍 For 90°:

We define:

  • sin 90° = 1
  • cos 90° = 0
  • cosec 90° = 1
  • cot 90° = 0
    tan 90° and sec 90° are undefined

All Values of Trigonometric Ratios [Some Specific Angles]

Some of the common values of trigonometric ratios are listed in the following table:

        ∠A         0°        30°        45°        60°        90°
        sin A                  0        1/2        1/√2        √3/2        1
        cos A        1        √3/2                1/√2                1/2                0
        tan A        0        1/√3        1        √3Not defined
        cosecA Not defined        2        √2        2/√3        1
        sec A        1        2/√3        √2        2Not defined
        cot ANot defined        √3        1        1/√3        0

MCQs on Trigonometric Ratios of 30°, 45°, and 60° for Class 10 Math

Multiple Choice Questions (MCQs) based on the geometric explanation of Trigonometric Ratios of 30°, 45°, and 60°, perfect for Class 10, Class 11, JEE, and NEET-level preparation


Q1. If in a triangle $\angle A = 30^\circ$, AB = 10 cm, and $\angle B = 90^\circ$, find the length of side AC.
A. 10 cm
B. 5√3 cm
C. 20 cm
D. 10√3 cm

Correct Answer: D. $10\sqrt{3} cm$
🧠 Explanation:
In right triangle with $\angle A = 30^\circ$ :

$\cos 30^\circ = \frac{AB}{AC} \Rightarrow \frac{\sqrt{3}}{2} = \frac{10}{AC} \Rightarrow AC = \frac{10 \times 2}{\sqrt{3}} = \frac{20}{\sqrt{3}} = 10\sqrt{3}$


Q2. $\tan \theta = \frac{1}{\sqrt{3}}$, and $0^\circ < \theta < 90^\circ$, what is the value of $\cos \theta$ ?
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. 1

Correct Answer: C. $\frac{\sqrt{3}}{2}$
🧠 Explanation:
If $\tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^\circ \Rightarrow \cos 30^\circ = \frac{\sqrt{3}}{2}$


Q3. If $\sin \theta = \cos \theta$, then the value of $\theta$ is:
A. 30°
B. 45°
C. 60°
D. 90°

Correct Answer: B. 45°
🧠 Explanation:
Only at 45°, $\sin \theta = \cos \theta = \frac{1}{\sqrt{2}}$


Q4. In a right triangle, the ratio of adjacent side to hypotenuse is $\frac{1}{2}$. The angle opposite to the perpendicular is:
A. 30°
B. 45°
C. 60°
D. 90°

Correct Answer: C. 60°
🧠 Explanation:

$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{2} \Rightarrow \theta = 60^\circ$


Q5. If $\sin \theta = \frac{1}{2}$ and $0^\circ < \theta < 90^\circ$, then what is the value of $\tan \theta + \cot \theta$?
A. $\sqrt{3} + \frac{1}{\sqrt{3}}$
B. 2
C. $\frac{1}{\sqrt{3}} + \sqrt{3}$
D. 3

Correct Answer: A. $\sqrt{3} + \frac{1}{\sqrt{3}}$
🧠 Explanation:
$\sin \theta = \frac{1}{2} \Rightarrow \theta = 30^\circ$

$\tan 30^\circ = \frac{1}{\sqrt{3}}, \quad \cot 30^\circ = \sqrt{3} \Rightarrow \text{Sum} = \frac{1}{\sqrt{3}} + \sqrt{3}$


Solved Examples on Trigonometric Ratios of 30°, 45°, and 60° for Class 10 Math


Find the value of: sin 30o cos 30o

Given sin 30o cos 30o

By substituting the values, we get

sin 30o cos 30o = ½ (√3/2) = √3/4


Find the value of: tan 30o tan 60o

Given tan 30o tan 60o

By substituting the values, we get

tan 30o tan 60o = 1/√3 (√3) = 1


Find the value of: cos2 60o + sin2 30o

Given cos2 60o + sin2 30o

By substituting the values, we get

cos2 60o + sin2 30o = (½)2 +(½)2 = ¼ + ¼ = ½


Find the value of: cosec2 60o – tan2 30o

Given cosec2 60o – tan2 30o

By substituting the values, we get

cosec2 60o – tan2 30o = (2/√3)2 – (1/√3)2

= 4/3 – 1/3 = 1


Find the value of: sin2 30o + cos2 30o + cot2 45o

Given sin2 30o + cos2 30o + cot2 45o

By substituting the values, we get

sin2 30o + cos2 30o + cot2 45o = (½)2 + (√3/2)2 + 12

= ¼ + ¾ + 1 = 2


Find the value of: cos2 60o + sec2 30o + tan2 45o

Given cos2 60o + sec2 30o + tan2 45o

By substituting the values, we get

cos2 60o + sec2 30o + tan2 45o = (½)2 + (2/√3)2 + 12

= ¼ + 4/3 + 1 = 31/12


Find the value of: tan2 30o + tan2 45o + tan2 60o

Given tan2 30o + tan2 45o + tan2 60o

By substituting the values, we get

tan2 30o + tan2 45o + tan2 60o = (1//√3)2 + 12 + (/√3)2

= 1/3 + 1 + 3 = 13/3 = 4 1/3


Find the value of: 3 sin2 30o + 2 tan2 60o – 5 cos2 45o.

Given 3 sin2 30o + 2 tan2 60o – 5 cos2 45o.

By substituting the values, we get

3 sin2 30o + 2 tan2 60o – 5 cos2 45o. = 3 (½)2 + 2 (√3)2 + 5 (1/√3)2

= ¾ + 6 – 5/2

= (3 + 24 – 10)/4 = 4 ¼


Prove that:

(i) sin 60o cos 30o + cos 60o. sin 30o = 1

(ii) cos 30o. cos 60o – sin 30o. sin 60o = 0

(iii) cosec2 45o – cot2 45o = 1

(iv) cos2 30o – sin2 30o = cos 60o.

(v) 3 cosec2 60o – 2 cot2 30o + sec2 45o = 0.

Solution :

(i) Given sin 60o cos 30o + cos 60o. sin 30o

LHS = sin 60o cos 30o + cos 60o. sin 30o

Now we have to prove that RHS = 1

= (√3/2) (√3/2) + ½ ½ = ¾ + ¼ = 1 = RHS

(ii) Given cos 30o. cos 60o – sin 30o. sin 60o = 0

LHS = cos 30o. cos 60o – sin 30o. sin 60o

= (√3/2) ½ – ½ (√3/2) = (√3/4) – (√3/4) = 0 = RHS

(iii) Given cosec2 45o – cot2 45o = 1

LHS = cosec2 45o – cot2 45o = 1

= (√2)2 – 12 = 2 – 1 = 1 = RHS

(iv) Given cos2 30o – sin2 30o = cos 60o.

LHS = cos2 30o – sin2 30o = cos 60o.

= (√3/2)2 – (½)2

= ¾ – ¼ = ½

= cos 60o = RHS

(v) Given 3 cosec2 60o – 2 cot2 30o + sec2 45o = 0.

LHS = 3 cosec2 60o – 2 cot2 30o + sec2 45o = 0.

= 3 (2/√3)2 – 2 (√3)2 + (√2)2

= 4 – 6 + 2 = 0 = RHS


Prove that:

(i) sin 60o = 2 sin 30o cos 30o.

(ii) 4 (sin4 30o + cos4 60o) – 3 (cos2 45o – sin2 90o) = 2

Solution:

(i) LHS = sin 60o = √3/2

RHS = 2 sin 30o cos 30o = 2 (√3/2) (½) = √3/2

Therefore LHS = RHS

(ii) LHS = 4 (sin4 30o + cos4 60o) – 3 (cos2 45o – sin2 90o)

Now by substituting the values we get

= 4[(½)4 + (½)4] – 3 [(1/√2)2 + 14]

= 4(1/16 + 1/16) – 3 (½ – 1)

= 8/16 + 3/2 = 2

LHS = RHS


Solve the given Problems, according to given statement

(i) If sin x = cos x and x is acute, state the value of x.

(ii) If sec A = cosec A and 0o ≤ A ≤ 90o, state the value of A.

(iii) If tan θ= cot θ and 0o ≤ θ ≤ 90o, state the value of θ.

(iv) If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.

Solution:

(i) The angle, x is acute and hence we have, 0 < x

We know that

Cos2x + sin2 x = 1

Since cos x = sin x

Above equation will become

2 sin2 x = 1

Sin x = 1/√2

Therefore, x = 45o

(ii) sec A = cosec A

Cos A = sin A

Cos2 A = sin2 A

Cos2x + sin2 x = 1

Above equation will become

Cos2 A = 1 – cos2 A

2 cos2 A = 1

Cos A = 1/√2

A = 45o

(iii) tan θ = cot θ

tan θ = 1/tan θ

tan2 θ = 1

tan θ = 1

tan θ = tan 45o

θ = 45o

(iv) sin x = cos y = sin (90o – y)

If x and y are acute angles

x = 90o – y

which implies,

x + y = 90o

hence x and y are complementary angles.


State True or False the given statements

(i) If sin x = cos y, then x + y = 45o; write true of false.

(ii) sec θ. Cot θ = cosec θ; write true or false.

(iii) For any angle θ, state the value of: Sin2 θ + cos2 θ.

Solution:

(i) sin x = cos y = sin (π/2 – y)

If x and y acute angles,

x = (π/2 – y)

x + y = π/2

x + y = 45o is false

(ii) sec θ. Cot θ = 1/ cos θ. cos θ/ sin θ

= cosec θ

sec θ. Cot θ = cosec θ

is true.

(iii) Sin2 θ + cos2 θ = Sin2 θ + 1 – sin2 θ.

= 1


State for any acute angle θ whether:

(i) sin θ increases or decreases as θ increases:

(ii) cos θ increases or decreases as θ increases.

(iii) tan θ increases or decreases as θ decreases.

Solution:

(i) For acute angles, remember what sine means: opposite over hypotenuse. If we increase the angle, then the opposite side gets larger. That means “opposite/hypotenuse” gets larger or increases.

(ii)For acute angles, remember what cosine means: base over hypotenuse. If we increase the angle, then the hypotenuse side gets larger. That means “base/hypotenuse” gets smaller or decreases.

(iii)For acute angles, remember what tangent means: opposite over base. If we decrease the angle, then the opposite side gets smaller. That means “opposite /base” gets decreases.


If √3 = 1.732, find (correct to two decimal place) the value of each of the following: (i) sin 60o  (ii) 2/ tan 30o

Solution:

(i) sin 60o = √3 /2

= 1.732/2 = 0.87

(ii) 2/ tan 30o = 2/ (1/√3)

= 2√3  = 2 (1.732) = 3.46


Given A = 60o and B = 30o, prove that:

(i) sin (A + B) = sin A cos B + cos A sin B

(ii) cos (A + B) = cos A cos B – sin A sin B

(iii) cos (A – B) = cos A cos B + sin A sin B

(iv) tan(A-B) = (tan A – tan B)/(1 + tan A tan B)

Solution:

(i) Given A = 60o and B = 30o

LHS = sin (A + B)

= sin (60o + 30o) = sin 90o = 1

RHS = sin A cos B + cos A sin B

= sin 60o cos 30o + cos 60o sin 30o

= √3/2 (√3/2) + ½ ½ = ¾ + ¼ = 1

LHS = RHS

(ii) LHS = cos (A + B)

= cos (60o + 30o) = cos 90o = 0

RHS = cos A cos B – sin A sin B

RHS = cos 60o cos 30o – sin 60o sin 30o

= ½ (√3/2) – (√3/2) ½ = √¾ – √3/4 = 0

LHS = RHS

(iii) LHS = cos (A – B)

= cos (60o – 30o) = cos 30o = √3/2

RHS = cos A cos B + sin A sin B

RHS = cos 60o cos 30o + sin 60o sin 30o

= ½ (√3/2) + (√3/2) ½ = √¾ + √3/4 = √3/2

LHS = RHS

(iv) LHS = tan (A – B)

= tan (60o – 30o) = tan 30o = 1/√3

RHS = (tan A – tan B)/(1 + tan A tan B)

(tan 60o – tan 30o)/(1 + tan 60o tan 30o)

= (√3 – 1/√3)/ 1 + √3 (1/√3)

= 2/ 2 √3 = 1/√3

Therefore, LHS = RHS


If tan (A+ B) =√3, tan (A-B) = 1/√3, then find A and B. [Given that  0° <A+B ≤ 90°; A>B ]

Solution:

Given that 

tan (A+B) = √3.

We know that tan 60 = √3.

Thus, tan (A+B) = tan 60° = √3.

Hence A+B= 60° …(1)

Similarly, given that,

tan (A-B) = 1/√3.

We know that tan 30° = 1/√3.

Thus, tan (A-B) = tan 30° = 1/√3.

Hence, A-B = 30° …(2)

Now, adding the equations (1) and (2), we get

A+B+A-B = 60° + 30°

2A = 90°

A = 45°.

Now, substitute A = 45° in equation (1), we get

45° +B = 60°

B = 60°- 45°

B = 15°

Hence, A = 45 and B = 15°.


If sin θ + cos θ = √3, then prove that tan θ + cot θ = 1.

Solution:

Given,

sin θ + cos θ = √3

Squaring on both sides,

(sin θ + cos θ)2 = (√3)2

sin2θ + cos2θ + 2 sin θ cos θ = 3

Using the identity sin2A + cos2A = 1,

1 + 2 sin θ cos θ = 3

2 sin θ cos θ = 3 – 1

2 sin θ cos θ = 2

sin θ cos θ = 1

sin θ cos θ = sin2θ + cos2θ

⇒ (sin2θ + cos2θ)/(sin θ cos θ) = 1

⇒ [sin2θ/(sin θ cos θ)] + [cos2θ/(sin θ cos θ)] = 1

⇒ (sin θ/cos θ) + (cos θ/sin θ) = 1

⇒ tan θ + cot θ = 1

Hence proved.


💡 Do You Know?

  • The values of trigonometric ratios are exact for 0°, 30°, 45°, 60°, and 90°.
  • These ratios are frequently used in geometry, physics, astronomy, and engineering.
  • The identities like sin²θ + cos²θ = 1 help derive all other formulas in trigonometry.

📘 Quick Summary Table

Anglesincostanseccoseccot
0101
30°1/2√3/21/√32/√32√3
45°1/√21/√21√2√21
60°√3/21/2√322/√31/√3
90°1010

RELATED POST