Master Class 10 Trigonometry with easy-to-understand solved problems and examples. Perfect for CBSE exams and competitive test (JEE, NDA) preparation by Anand Classes. Boost your exam scores with Anand Classesβ expert solutions.
π Related Posts:
Trigonometric Ratios of 30Β°, 45Β°, 60Β° Explained Geometrically with MCQS, Solved Examples
|
Trigonometry NTSE & JEE Foundation | Class 10 Solved Problems and Examples
|
Trigonometric Identities Class 10 β Solved Problems & Examples
|
Trigonometry JEE Foundation Important Solved Problems and Examples
|
Trigonometric Ratios | Definitions, Formulas & Identities, Solved Examples
If A = 30o, then Prove That:
(i) sin 2A = 2sin A cos A = 2 tan A/(1 + tan2A)
(ii) cos 2A = cos2A β sin2A = (1 – tan2A)/(1 + tan2A)
(iii) 2 cos2 A β 1 = 1 β 2 sin2A
(iv) sin 3A = 3 sin A β 4 sin3A.
Solution:
(i) Given A = 30o
Sin 2A = sin 2(30o)
= sin 60o = β3/2
2 sin A cos A = 2 sin 30o cos 30o
= 2 (Β½) (β3/2) = β3/2
Now,
2 tan A/(1 + tan2A) = 2 tan 300/(1 + tan2 300)
= 2(1/β3)/(1 +(1/β3)2) = β3/2
(ii) cos 2A = cos 2 (300) = cos 60o = Β½
Cos2 A β sin2 A = cos2 30o β sin2 30o
= 3/4 – 1/4 = 1/2
(1 – tan2A)/(1 + tan2A) = (1 – tan2300)/(1 + tan2300)
= (1 -(1/β3)2)/(1 +(1/β3)2) = 1/2
(iii) 2 cos2 A β 1 = 2 cos2 30o β 1
= 2 (ΒΎ) β 1 = 3/2 β 1 = Β½
1 β 2 sin2 A = 1 β 2 sin2 30o
= 1 β 2 (ΒΌ) = Β½
2 cos2 A β 1 = 1 β sin2 A
(iv) sin 3A = sin 3 (30o)
= sin 90o = 1
3 sin A β 4 sin3 A = 3 sin 30o β 4 sin3 30o
= 3 (Β½) β 4 (Β½)3 = 3/2 β Β½ = 1
Therefore,
Sin 3A = 3 sin A β 4 sin3 A
If A = B = 45o, show that:
(i) sin (A β B) = sin A cos B β cos A sin B
(ii) cos (A + B) = cos A cos B β sin A sin B
Solution:
Given that A = B = 45o
(i) LHS = sin (A β B)
= sin (45o β 45o)
= sin 0o
= 0
RHS = sin A cos B β cos A sin B
= sin 45o cos 45o β cos 45o sin 45o
= 1/β2 (1/β2) β 1/β2 (1/β2)
= 0
Therefore, LHS = RHS
(ii) LHS = cos (A + B)
= cos (45o + 45o)
= cos 90o
= 0
RHS = cos A cos B β sin A sin B
= cos 45o cos 45o β sin 45o sin 45o
= 1/β2 (1/β2) β 1/β2 (1/β2)
= 0
Therefore, LHS = RHS
If A = 30o; show that:
(i) sin 3 A = 4 sin A sin (60o β A) sin (60o + A)
(ii) (sin A β cos A)2 = 1 β sin 2A
(iii) cos 2A = cos4 A β sin4 A
(iv) (1 – cos 2A)/sin 2A = tan A
(v) (1 + sin 2 A + cos 2 A) / (sin A + cos A) = 2 cos A.
(vi) 4 cos A cos (60o β A). cos (60o + A) = cos 3A
(vii) (cos3A – cos 3A)/cos A + (sin3A + sin 3A)/sin A = 3
Solution:
Given that A = 30o
(i) According to the question we have
LHS = sin 3A
= sin 3 (30o)
= sin 90o
= 1
RHS = 4 sin A sin (60o β A) sin (60o + A)
= 4 sin A sin (60o β 30o) sin (60o + 30o)
= 4 (Β½) (Β½) (1)
= 1
LHS = RHS
(ii) According to the question we have
LHS = (sin A β cos A)2
= (sin 30o β cos 30o)2
= (Β½ β β3/2)2
= ΒΌ + ΒΎ β β3/2
= 1 β β3/2
= (2 β β3)/2
RHS = 1 β sin 2A
= 1 β sin 2 (30o)
= 1 β sin 60o
= 1 β β3/2
= (2 β β3)/2
Therefore, LHS = RHS
(iii) According to the question we have
LHS = cos 2A
= cos 2 (30o)
= cos 60o
= Β½
RHS = cos4 A β sin4 A
= cos4 30o β sin4 30o
= (β3/2)4 β (Β½)4
= 9/16 β 1/16
= Β½
LHS = RHS
(iv) According to the question we have
LHS = (1 β cos 2A)/ sin 2A
= 1 β cos 2(30o)/ sin 2 (30o)
= 1 β Β½/ (β3/2)
= 1/β3
RHS = tan A
= tan 30o
= 1/β3
LHS = RHS
(v) According to the question we have
$$
\text{LHS} = \frac{1 + \sin 2A + \cos 2A}{\sin A + \cos A}
$$
$$
= \frac{1 + \sin 2(30^\circ) + \cos 2(30^\circ)}{\sin 30^\circ + \cos 30^\circ}
$$
$$
= \frac{1 + \frac{\sqrt{3}}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}}
$$
$$
= \frac{1 + \frac{\sqrt{3}}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}}
$$
$$
= \frac{3 + \sqrt{3}}{\sqrt{3} + 1} \times \frac{\sqrt{3} – 1}{\sqrt{3} – 1}
$$
$$
= \frac{3\sqrt{3} – 3 + 3 – \sqrt{3}}{2}
$$
$$
= \frac{2\sqrt{3}}{2}
$$
$$
= \sqrt{3}
$$
RHS = 2 cos A
= 2 cos 30o
= 2 (β3/2)
= β3
(vi) According to the question we have
LHS = 4 cos A cos (60o β A) cos (60o + A)
= 4 cos A cos (60o β 30o) cos (60o + 30o)
= 4 cos 30o cos 30o cos 90o
= 4 (β3/2) (β3/2) 0
= 0
RHS = cos 3A
= cos 3 (30o)
= cos 90o
= 0
LHS = RHS
(vii) According to the question we have
$$
\text{LHS} = \frac{\cos^3 A – \cos 3A}{\cos A} + \frac{\sin^3 A + \sin 3A}{\sin A}
$$
$$
= \frac{\cos^3 30^\circ – \cos 3(30^\circ)}{\cos 30^\circ} + \frac{\sin^3 30^\circ + \sin 3(30^\circ)}{\sin 30^\circ}
$$
$$
= \frac{\left( \frac{\sqrt{3}}{2} \right)^3 – 0}{\frac{\sqrt{3}}{2}} + \frac{\left( \frac{1}{2} \right)^3 + 1}{\frac{1}{2}}
$$
$$
= \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}} + \frac{9}{8} \times \frac{1}{\frac{1}{2}}
$$
$$
= \left( \frac{\sqrt{3}}{2} \right)^2 + \frac{9}{4}
$$
= ΒΎ + 9/4
= 12/4
= 3 = RHS
Hence the proof
Do You Know?
- The values of trigonometric ratios are exact for 0Β°, 30Β°, 45Β°, 60Β°, and 90Β°.
- These ratios are frequently used in geometry, physics, astronomy, and engineering.
- The identities like sinΒ²ΞΈ + cosΒ²ΞΈ = 1 help derive all other formulas in trigonometry.
π Quick Summary Table
Angle | sin | cos | tan | sec | cosec | cot |
---|---|---|---|---|---|---|
0Β° | 0 | 1 | 0 | 1 | β | β |
30Β° | 1/2 | β3/2 | 1/β3 | 2/β3 | 2 | β3 |
45Β° | 1/β2 | 1/β2 | 1 | β2 | β2 | 1 |
60Β° | β3/2 | 1/2 | β3 | 2 | 2/β3 | 1/β3 |
90Β° | 1 | 0 | β | β | 1 | 0 |