Trigonometry Class 10 Solved Problems and Examples, Prove Identities by Given Angle


πŸ“Œ Related Posts:
Trigonometric Ratios of 30Β°, 45Β°, 60Β° Explained Geometrically with MCQS, Solved Examples | Trigonometry NTSE & JEE Foundation | Class 10 Solved Problems and Examples | Trigonometric Identities Class 10 – Solved Problems & Examples | Trigonometry JEE Foundation Important Solved Problems and Examples | Trigonometric Ratios | Definitions, Formulas & Identities, Solved Examples


If A = 30o, then Prove That:

(i) sin 2A = 2sin A cos A = 2 tan A/(1 + tan2A)

(ii) cos 2A = cos2A – sin2A = (1 – tan2A)/(1 + tan2A)

(iii) 2 cos2 A – 1 = 1 – 2 sin2A

(iv) sin 3A = 3 sin A – 4 sin3A.

Solution:

(i) Given A = 30o

Sin 2A = sin 2(30o)

= sin 60o = √3/2

2 sin A cos A = 2 sin 30o cos 30o

= 2 (½) (√3/2) = √3/2

Now,

2 tan A/(1 + tan2A) = 2 tan 300/(1 + tan2 300)

= 2(1/√3)/(1 +(1/√3)2) = √3/2

(ii) cos 2A = cos 2 (300) = cos 60o = Β½

Cos2 A – sin2 A = cos2 30o β€“ sin2 30o

= 3/4 – 1/4 = 1/2

(1 – tan2A)/(1 + tan2A) = (1 – tan2300)/(1 + tan2300)

= (1 -(1/√3)2)/(1 +(1/√3)2) = 1/2

(iii) 2 cos2 A – 1 = 2 cos2 30o β€“ 1

= 2 (ΒΎ) – 1 = 3/2 – 1 = Β½

1 – 2 sin2 A = 1 – 2 sin2 30o

= 1 – 2 (ΒΌ) = Β½

2 cos2 A – 1 = 1 – sin2 A

(iv) sin 3A = sin 3 (30o)

= sin 90o = 1

3 sin A – 4 sin3 A = 3 sin 30o β€“ 4 sin3 30o

= 3 (Β½) – 4 (Β½)3 = 3/2 – Β½ = 1

Therefore,

Sin 3A = 3 sin A – 4 sin3 A


If A = B = 45o, show that:

(i) sin (A – B) = sin A cos B – cos A sin B

(ii) cos (A + B) = cos A cos B – sin A sin B

Solution:

Given that A = B = 45o

(i) LHS = sin (A – B)

= sin (45o β€“ 45o)

= sin 0o

= 0

RHS = sin A cos B – cos A sin B

= sin 45o cos 45o β€“ cos 45o sin 45o

= 1/√2 (1/√2) – 1/√2 (1/√2)

= 0

Therefore, LHS = RHS

(ii) LHS = cos (A + B)

= cos (45o + 45o)

= cos 90o

= 0

RHS = cos A cos B – sin A sin B

= cos 45o cos 45o β€“ sin 45o sin 45o

= 1/√2 (1/√2) – 1/√2 (1/√2)

= 0

Therefore, LHS = RHS


If A = 30o; show that:

(i) sin 3 A = 4 sin A sin (60o β€“ A) sin (60o + A)

(ii) (sin A – cos A)2 = 1 – sin 2A

(iii) cos 2A = cos4 A – sin4 A

(iv) (1 – cos 2A)/sin 2A = tan A

(v) (1 + sin 2 A + cos 2 A) / (sin A + cos A) = 2 cos A.

(vi) 4 cos A cos (60o β€“ A). cos (60o + A) = cos 3A

(vii) (cos3A – cos 3A)/cos A + (sin3A + sin 3A)/sin A = 3

Solution:

Given that A = 30o

(i) According to the question we have

LHS = sin 3A

= sin 3 (30o)

= sin 90o

= 1

RHS = 4 sin A sin (60o β€“ A) sin (60o + A)

= 4 sin A sin (60o β€“ 30o) sin (60o + 30o)

= 4 (Β½) (Β½) (1)

= 1

LHS = RHS

(ii) According to the question we have

LHS = (sin A – cos A)2

= (sin 30o β€“ cos 30o)2

= (Β½ – √3/2)2

= ΒΌ + ΒΎ – √3/2

= 1 – √3/2

= (2 – √3)/2

RHS = 1 – sin 2A

= 1 – sin 2 (30o)

= 1 – sin 60o

= 1 – √3/2

= (2 – √3)/2

Therefore, LHS = RHS

(iii) According to the question we have

LHS = cos 2A

= cos 2 (30o)

= cos 60o

= Β½

RHS = cos4 A – sin4 A

= cos4 30o β€“ sin4 30o

= (√3/2)4 β€“ (Β½)4

= 9/16 – 1/16

= Β½

LHS = RHS

(iv) According to the question we have

LHS = (1 – cos 2A)/ sin 2A

= 1 – cos 2(30o)/ sin 2 (30o)

= 1 – Β½/ (√3/2)

= 1/√3

RHS = tan A

= tan 30o

= 1/√3

LHS = RHS

(v) According to the question we have

$$
\text{LHS} = \frac{1 + \sin 2A + \cos 2A}{\sin A + \cos A}
$$
$$
= \frac{1 + \sin 2(30^\circ) + \cos 2(30^\circ)}{\sin 30^\circ + \cos 30^\circ}
$$
$$
= \frac{1 + \frac{\sqrt{3}}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}}
$$
$$
= \frac{1 + \frac{\sqrt{3}}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}}
$$
$$
= \frac{3 + \sqrt{3}}{\sqrt{3} + 1} \times \frac{\sqrt{3} – 1}{\sqrt{3} – 1}
$$
$$
= \frac{3\sqrt{3} – 3 + 3 – \sqrt{3}}{2}
$$
$$
= \frac{2\sqrt{3}}{2}
$$
$$
= \sqrt{3}
$$

RHS = 2 cos A

= 2 cos 30o

= 2 (√3/2)

= √3

(vi) According to the question we have

LHS = 4 cos A cos (60o β€“ A) cos (60o + A)

= 4 cos A cos (60o β€“ 30o) cos (60o + 30o)

= 4 cos 30o cos 30o cos 90o

= 4 (√3/2) (√3/2) 0

= 0

RHS = cos 3A

= cos 3 (30o)

= cos 90o

= 0

LHS = RHS

(vii) According to the question we have

$$
\text{LHS} = \frac{\cos^3 A – \cos 3A}{\cos A} + \frac{\sin^3 A + \sin 3A}{\sin A}
$$
$$
= \frac{\cos^3 30^\circ – \cos 3(30^\circ)}{\cos 30^\circ} + \frac{\sin^3 30^\circ + \sin 3(30^\circ)}{\sin 30^\circ}
$$
$$
= \frac{\left( \frac{\sqrt{3}}{2} \right)^3 – 0}{\frac{\sqrt{3}}{2}} + \frac{\left( \frac{1}{2} \right)^3 + 1}{\frac{1}{2}}
$$
$$
= \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}} + \frac{9}{8} \times \frac{1}{\frac{1}{2}}
$$
$$
= \left( \frac{\sqrt{3}}{2} \right)^2 + \frac{9}{4}
$$

= ΒΎ + 9/4

= 12/4

= 3 = RHS

Hence the proof


Do You Know?

  • The values of trigonometric ratios are exact for 0Β°, 30Β°, 45Β°, 60Β°, and 90Β°.
  • These ratios are frequently used in geometry, physics, astronomy, and engineering.
  • The identities like sinΒ²ΞΈ + cosΒ²ΞΈ = 1 help derive all other formulas in trigonometry.

πŸ“˜ Quick Summary Table

Anglesincostanseccoseccot
0Β°0101––
30°1/2√3/21/√32/√32√3
45°1/√21/√21√2√21
60°√3/21/2√322/√31/√3
90Β°10––10

RELATED POST