Master JEE Foundation-level Trigonometry with expertly solved problems. Build strong basics, improve accuracy, and boost your confidence for JEE, NDA competitive exams and CBSE Class 10 with our detailed step-by-step solutions.
📌 Related Posts:
Trigonometric Ratios | Definitions, Formulas & Identities, Solved Examples
|
Trigonometric Identities Class 10 – Solved Problems & Examples
|
Trigonometry Class 10 Solved Problems and Examples, Prove Identities by Given Angle
|
Trigonometry NTSE & JEE Foundation | Class 10 Solved Problems and Examples
|
Trigonometric Ratios NTSE JEE Foundation Important Solved Examples and Problems
Prove the Following Problems
sin4 A – cos4 A = 2 sin2 A – 1
Solution:
Taking L.H.S,
sin4 A – cos4 A
= (sin2 A)2 – (cos2 A)2
= (sin2 A + cos2 A) (sin2 A – cos2 A)
= sin2A – cos2A
= sin2A – (1 – sin2A) [Since, cos2 A = 1 – sin2 A]
= 2sin2 A – 1
– Hence Proved
(1 – tan A)2 + (1 + tan A)2 = 2 sec2 A
Solution:
Taking L.H.S,
(1 – tan A)2 + (1 + tan A)2
= (1 + tan2 A + 2 tan A) + (1 + tan2 A – 2 tan A)
= 2 (1 + tan2 A)
= 2 sec2 A [Since, 1 + tan2 A = sec2 A]
– Hence Proved
cosec4 A – cosec2 A = cot4 A + cot2 A
Solution:
cosec4 A – cosec2 A
= cosec2 A(cosec2 A – 1)
= (1 + cot2 A) (1 + cot2 A – 1)
= (1 + cot2 A) cot2 A
= cot4 A + cot2 A = R.H.S
– Hence Proved
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Solution:
Taking L.H.S,
(cosec A + sin A) (cosec A – sin A)
= cosec2 A – sin2 A
= (1 + cot2 A) – (1 – cos2 A)
= cot2 A + cos2 A = R.H.S
– Hence Proved
(sec A – cos A)(sec A + cos A) = sin2 A + tan2 A
Solution:
Taking L.H.S,
(sec A – cos A)(sec A + cos A)
= (sec2 A – cos2 A)
= (1 + tan2 A) – (1 – sin2 A)
= sin2 A + tan2 A = RHS
– Hence Proved
(cos A + sin A)2 + (cosA – sin A)2 = 2
Solution:
Taking L.H.S,
(cos A + sin A)2 + (cosA – sin A)2
= cos2 A + sin2 A + 2cos A sin A + cos2 A – 2cosA.sinA
= 2 (cos2 A + sin2 A) = 2 = R.H.S
– Hence Proved
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Solution:
Taking LHS,
(sin A + cosec A)2 + (cos A + sec A)2
= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2cos A sec A
= (sin2 A + cos2 A ) + cosec2 A + sec2 A + 2 + 2
= 1 + cosec2 A + sec2 A + 4
= 5 + (1 + cot2 A) + (1 + tan2 A)
= 7 + tan2 A + cot2 A = RHS
– Hence Proved
sec2 A. cosec2 A = tan2 A + cot2 A + 2
Solution:
Taking,
RHS = tan2 A + cot2 A + 2 = tan2 A + cot2 A + 2 tan A. cot A
= (tan A + cot A)2 = (sin A/cos A + cos A/ sin A)2
= (sin2 A + cos2 A/ sin A.cos A)2 = 1/ cos2 A. sin2 A
= sec2 A. cosec2 A = LHS
– Hence Proved
cot2 A – 1/sin2 A + 1 = 0
Solution:
cot2 A – 1/sin2 A + 1 = 0
LHS = cot2 A – 1/sin2 A + 1
We know that
1/sin A = cosec A
= cot2 A – cosec2 A + 1
= (1 + cot2 A) – cosec2 A
We know that 1 + cot2 A = cosec2 A
= cosec2 A – cosec2 A
= 0
= RHS
Therefore, LHS = RHS.
1/(1 + tan2 A) + 1/(1 + cot2 A) = 1
Solution:
LHS = 1/(1 + tan2 A) + 1/(1 + cot2 A)
We know that
sec2 A – tan2 A = 1
sec2 A = 1 + tan2 A
cosec2 A – cot2 A = 1
cosec2 A = 1 + cot2 A
So we get
= 1/sec2 A + 1/cosec2 A
Here 1/sec A = cos A and 1/cosec A = sin A
= cos2 A + sin2 A
= 1
= RHS
Therefore, LHS = RHS.
If sin A + cosec A = 2; Find the value of sin2 A + cosec2 A.
Solution:
Given, sin A + cosec A = 2
On squaring on both sides, we have
(sin A + cosec A)2 = 22
sin2 A + cosec2 A + 2sinA. cosec A = 4
sin2 A + cosec2 A + 2 = 4 [As sin A. cosec A = sin A x 1/sin A = 1]
sin2 A + cosec2 A = 4 – 2 = 2
Hence, the value of (sin2 A + cosec2 A) is 2
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that: x2 + y2 = m2 + n2
Solution:
Taking RHS,
m2 + n2
= (x cos A + y sin A)2 + (x sin A – y cos A)2
= x2 cos2 A + y2 sin2 A + 2xy cos A sin A + x2 sin2 A + y2 cos2 A – 2xy sin A cos A
= x2 (cos2 A + sin2 A) + y2 (sin2 A + cos2 A)
= x2 + y2 [Since, cos2 A + sin2 A = 1]
= RHS
If m = a sec A + b tan A and n = a tan A + b sec A, prove that m2 – n2 = a2 – b2
Solution:
Taking LHS,
m2 – n2
= (a sec A + b tan A)2 – (a tan A + b sec A)2
= a2 sec2 A + b2 tan2 A + 2 ab sec A tan A – a2 tan2 A – b2 sec2 A – 2ab tan A sec A
= a2 (sec2 A – tan2 A) + b2 (tan2 A – sec2 A)
= a2 (1) + b2 (-1) [Since, sec2 A – tan2 A = 1]
= a2 – b2
= RHS
If sin θ + cosec θ = 2, find the value of sin2 θ + cosec2 θ.
Solution:
It is given that
sin θ + cosec θ = 2
sin θ + 1/sin θ = 2
By further calculation
sin2 θ + 1 = 2 sin θ
sin2 θ – 2 sin θ + 1 = 0
So we get
(sin θ – 1)2 = 0
sin θ – 1 = 0
sin θ = 1
Here
sin2 θ + cosec2 θ = sin2 θ + 1/sin2 θ
Substituting the values
= 12 + 1/12
= 1 + 1/1
= 1 + 1
= 2
If x = a cos θ + b sin θ and y = a sin θ – b cos θ, prove that x2 + y2 = a2 + b2.
Solution:
It is given that
x = a cos θ + b sin θ …. (1)
y = a sin θ – b cos θ …. (2)
By squaring and adding both the equations
x2 + y2 = (a cos θ + b sin θ)2 + (a sin θ – b cos θ)2
Using the formula
(a + b)2 = a2 + b2 + 2ab and (a – b)2 = a2 + b2 – 2ab
= [(a cos θ)2 + (b sin θ)2 + 2 (a cos θ) (b sin θ)] + [(a sin θ)2 + (b cos θ)2 – 2 (a sin θ) (b cos θ)]
By further calculation
= a2 cos2 θ + b2 sin2 θ + 2 ab sin θ cos θ + a2 sin2 θ + b2 cos2 θ – 2 ab sin θ cos θ
= a2 cos2 θ + b2 sin2 θ + a2 sin2 θ + b2 cos2 θ
So we get
= a2 (cos2 θ + sin2 θ) + b2 (sin2 θ + cos2 θ)
Here sin2 θ + cos2 θ = 1
= a2 (1) + b2 (1)
= a2 + b2
Therefore, x2 + y2 = a2 + b2.
If 2 cos θ = √3, prove that 3 sin θ – 4 sin3 θ = 1.
Solution:
It is given that
2 cos θ = √3
cos θ = √3/2
We know that
sin2 θ = 1 – cos2 θ
Substituting the values
sin2 θ = 1 – (√3/2)2
sin2 θ = 1 – 3/4
sin2 θ = ¼
sin θ = √ 1/4 = 1/2
Consider
LHS = 3 sin θ – 4 sin3 θ
It can be written as
= sin θ (3 – 4 sin2 θ)
Substituting the values
= 1/2 (3 – 4 × ¼)
= 1/2 (3 – 1)
= 1/2 × 2
= 1
= RHS
Therefore, proved.
If sin θ + cosec θ = 10/3, find the value of sin2 θ + cosec2 θ.
Solution:
It is given that
sin θ + cosec θ = 10/3
By squaring on both sides
(sin θ + cosec θ)2 = (10/3)2
Expanding using formula (a + b)2 = a2 + b2 + 2ab
sin2 θ + cosec2 θ + 2 sin θ cosec θ = 100/9
We know that sin θ = 1/cosec θ
sin2 θ + cosec2 θ + 2 sin θ × 1/ sin θ = 100/9
By further calculation
sin2 θ + cosec2 θ + 2 = 100/9
sin2 θ + cosec2 θ = 100/9 – 2
Taking LCM
sin2 θ + cosec2 θ = (100 – 18)/9 = 82/9
So we get
sin2 θ + cosec2 θ = 82/9
Prove that : tan A + cot A = sec A cosec A
Solution:
L.H.S. = tan A + cot A
= sin A/cos A + cos A/sin A
= (sin2 A + cos2 A)/ (sin A cos A)
= 1/ (sin A cos A)
= sec A cosec A
= R.H.S
Prove that : (1 + tan A)2 + (1 – tan A)2 = 2 sec2 A
Solution:
L.H.S. = (1 + tan A)2 + (1 – tan A)2
= 1 + 2 tan A + tan2 A + 1 – 2 tan A + tan2 A
= 2 + 2 tan2 A
= 2(1 + tan2 A) [As 1 + tan2 A = sec2 A]
= 2 sec2 A
= R.H.S.
Prove that : sec2 A + cosec2 A = sec2 A. cosec2 A
Solution:
L.H.S = sec2 A + cosec2 A
= 1/cos2 A + 1/sin2 A
= (sin2 A + cos2 A)/ (sin2 A cos2 A)
= 1/ (sin2 A cos2 A)
= sec2 A cosec2 A = R.H.S
Prove that : cosec4 θ – cosec2 θ = cot4 θ + cot2 θ
Solution:
L.H.S. = cosec4 θ – cosec2 θ
= cosec2 θ (cosec2 θ – 1)
= cosec2 θ cot2 θ [cosec2 θ – 1 = cot2 θ]
= (cot2 θ + 1) cot2 θ
= cot4 θ + cot2 θ
= R.H.S.
Prove that : 2 sec2 θ – sec4 θ – 2 cosec2 θ + cosec4 θ = cot4 θ – tan4 θ.
Solution:
L.H.S. = 2 sec2 θ – sec4 θ – 2 cosec2 θ + cosec4 θ
= 2 (tan2 θ + 1) – (tan2 θ + 1)2 – 2 (1 + cot2 θ) + (1 + cot2 θ)2
= 2 tan2 θ + 2 – (tan4 θ + 2 tan2 θ + 1) – 2 – 2 cot2 θ + (1 + 2 cot2 θ + cot4 θ)
= 2 tan2 θ + 2 – tan4 θ – 2 tan2 θ – 1 – 2 – 2 cot2 θ + 1 + 2 cot2 θ + cot4 θ
= cot4 θ – tan4 θ = R.H.S.
Prove that : sec4 A – tan4 A = 1 + 2 tan2 A
Solution:
sec4 A – tan4 A = 1 + 2 tan2 A
L.H.S. = sec4 A – tan4 A
= (sec2 A – tan2 A) (sec2 A + tan2 A)
= (1 + tan4 A – tan4 A) (1 + tan4 A + tan4 A) [As sec2 A = tan4 A + 1]
= 1 (1 + 2 tan2 A)
= 1 + 2 tan2 A = R.H.S.
If 7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°, then find the value of θ.
Solution:
Given,
7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°
3 sin2 θ + 3 cos2 θ + 4 sin2 θ = 4
3 (sin2 θ + 3 cos2 θ) + 4 sin2 θ = 4
3 (1) + 4 sin2 θ = 4
4 sin2 θ = 4 – 3
sin2 θ = ¼
Taking square-root on both sides, we get
sin θ = ½
Thus, θ = 30o
If sec θ + tan θ = m and sec θ – tan θ = n, prove that mn = 1.
Solution:
Given,
sec θ + tan θ = m
sec θ – tan θ = n
Now,
mn = (sec θ + tan θ) (sec θ – tan θ)
= sec2 θ – tan2 θ = 1
Thus, mn = 1
If x = h + a cos θ and y = k + a sin θ, prove that (x – h)2 + (y – k)2 = a2.
Solution:
Given,
x = h + a cos θ
y = k + a sin θ
Now,
x – h = a cos θ
y – k = a sin θ
On squaring and adding, we get
(x – h)2 + (y – k)2 = a2 cos2 θ + a2 sin2 θ
= a2 (sin2 θ + cos2 θ)
= a2 (1) [Since, sin2 θ + cos2 θ = 1]
– Hence proved
Prove that : sin2 θ + cos4 θ = cos2 θ + sin4 θ
Solution :
sin2 θ + cos4 θ = cos2 θ + sin4 θ
L.H.S. = sin2 θ + cos4 θ
= (1 – cos2 θ) + cos4 θ
= cos4 θ – cos2 θ + 1
= cos2 θ (cos2 θ – 1) + 1
= cos2 θ (- sin2 θ) + 1
= 1 – sin2 θ cos2 θ
Now,
R.H.S. = cos2 θ + sin4 θ
= (1 – sin2 θ) + sin4 θ
= sin4 θ – sin2 θ + 1
= sin2 θ (sin2 θ – 1) + 1
= sin2 θ (-cos2 θ) + 1
= 1 – sin2 θ cos2 θ
Hence, L.H.S. = R.H.S.
Prove that : 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = 0
Solution:
Given,
2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = 0
L.H.S. = 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1
= 2 [(sin2 θ)3 + (cos2 θ)3] – 3 (sin4 θ + cos4 θ) + 1
= 2 [(sin2 θ + cos2 θ) (sin4 θ + cos4 θ – sin2 θ cos2 θ)] – 3 (sin4 θ + cos4 θ) + 1
= 2 (sin4 θ + cos4 θ – sin2 θ cos2 θ) – 3 (sin4 θ + cos4 θ) + 1
= 2 sin4 θ + 2 cos4 θ – 2 sin2 θ cos2 θ – 3 sin4 θ – 3 cos4 θ + 1
= 1 – sin4 θ – cos4 θ – 2 sin2 θ cos2 θ
= 1 – [sin4 θ + cos4 θ + 2 sin2 θ cos2 θ]
= 1 – 1
= 0 = R.H.S.
When 0° < θ < 90°, solve the following equations:
(i) 2 cos2 θ + sin θ – 2 = 0
(ii) 3 cos θ = 2 sin2 θ
(iii) sec2 θ – 2 tan θ = 0
(iv) tan2 θ = 3 (sec θ – 1).
Solution:
Given, 0° < θ < 90°
(i) 2 cos2 θ + sin θ – 2 = 0
2 (1 – sin2 θ) + sin θ – 2 = 0
2 – 2 sin2 θ + sin θ – 2 = 0
– 2 sin2 θ + sin θ = 0
sin θ (1 – 2 sin θ) = 0
So, either sin θ = 0 or 1 – 2 sin θ = 0
If sin θ = 0
⇒ θ = 0o
And, if 1 – 2 sin θ = 0
sin θ = ½
⇒ θ = 30o
Thus, θ = 0o or 30o
(ii) 3 cos θ = 2 sin2 θ
3 cos θ = 2 (1 – cos2 θ)
3 cos θ = 2 – 2 cos2 θ
2 cos2 θ + 3 cos θ – 2 = 0
2 cos2 θ + 4 cos θ – cos θ – 2 = 0
2 cos θ (cos θ + 2) – 1(cos θ + 2)
(2 cos θ – 1) (cos θ + 2) = 0
So, either 2 cos θ – 1 = 0 or cos θ + 2 = 0
If 2 cos θ – 1 = 0
cos θ = ½
⇒ θ = 60o
And, for cos θ + 2 = 0
⇒ cos θ = -2 which is not possible being out of range.
Thus, θ = 60o
(iii) sec2 θ – 2 tan θ = 0
(1 + tan2 θ) – 2 tan θ = 0
tan2 θ – 2 tan θ + 1 = 0
(tan θ – 1)2 = 0
tan θ – 1 = 0
⇒ tan θ = 1
Thus, θ = 45o
(iv) tan2 θ = 3 (sec θ – 1)
(sec2 θ – 1) = 3 sec θ – 3
sec2 θ – 1 – 3 sec θ + 3 = 0
sec2 θ – 3 sec θ + 2 = 0
sec2 θ – 2 sec θ – sec θ + 2 = 0
sec θ (sec θ – 2) – 1 (sec θ = 2) = 0
(sec θ – 1) (sec θ – 2) = 0
So, either sec θ – 1 = 0 or sec θ – 2 = 0
If sec θ – 1 = 0
sec θ = 1
⇒ θ = 0o
And, if sec θ – 2 = 0
sec θ = 2
⇒ θ = 60o
Thus, θ = 0o or 60o
💡 Do You Know?
- The values of trigonometric ratios are exact for 0°, 30°, 45°, 60°, and 90°.
- These ratios are frequently used in geometry, physics, astronomy, and engineering.
- The identities like sin²θ + cos²θ = 1 help derive all other formulas in trigonometry.
📘 Quick Summary Table
Angle | sin | cos | tan | sec | cosec | cot |
---|---|---|---|---|---|---|
0° | 0 | 1 | 0 | 1 | – | – |
30° | 1/2 | √3/2 | 1/√3 | 2/√3 | 2 | √3 |
45° | 1/√2 | 1/√2 | 1 | √2 | √2 | 1 |
60° | √3/2 | 1/2 | √3 | 2 | 2/√3 | 1/√3 |
90° | 1 | 0 | – | – | 1 | 0 |
Trigonmetric Identities Table Summary
Identities Name | Identities |
---|---|
Pythagorean Identities | sin2θ + cos2θ = 1 |
1 + tan2θ = sec2θ | |
1 + cot2θ = cosec2θ | |
Reciprocal Identities | cosec θ = 1/sin θ |
sec θ = 1/cos θ | |
cot θ = 1/tan θ | |
Quotient Identities | tan θ = sin θ/cos θ |
cot θ = cos θ/sin θ |