Trigonometry JEE Foundation Important Solved Problems and Examples


📌 Related Posts:
Trigonometric Ratios | Definitions, Formulas & Identities, Solved Examples | Trigonometric Identities Class 10 – Solved Problems & Examples | Trigonometry Class 10 Solved Problems and Examples, Prove Identities by Given Angle | Trigonometry NTSE & JEE Foundation | Class 10 Solved Problems and Examples | Trigonometric Ratios NTSE JEE Foundation Important Solved Examples and Problems


Prove the Following Problems


 sin4 A – cos4 A = 2 sin2 A – 1

Solution:

Taking L.H.S,

sin4 A – cos4 A

= (sinA)2 – (cos2 A)2

= (sin2 A + cos2 A) (sin2 A – cos2 A)

= sin2A – cos2A

= sin2A – (1 – sin2A) [Since, cos2 A = 1 – sin2 A]

= 2sin2 A – 1

– Hence Proved


(1 – tan A)2 + (1 + tan A)2 = 2 sec2 A

Solution:

Taking L.H.S,

(1 – tan A)2 + (1 + tan A)2

= (1 + tan2 A + 2 tan A) + (1 + tan2 A – 2 tan A)

= 2 (1 + tan2 A)

= 2 sec2 A [Since, 1 + tan2 A = sec2 A]

– Hence Proved


cosec4 A – cosec2 A = cot4 A + cot2 A

Solution:

cosec4 A – cosec2 A

= cosec2 A(cosec2 A – 1)

= (1 + cot2 A) (1 + cot2 A – 1)

= (1 + cot2 A) cot2 A

= cot4 A + cot2 A = R.H.S

– Hence Proved


(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A

Solution:

Taking L.H.S,

(cosec A + sin A) (cosec A – sin A)

= cosec2 A – sin2 A

= (1 + cotA) – (1 – cos2 A)

= cotA + cos2 A = R.H.S

– Hence Proved


(sec A – cos A)(sec A + cos A) = sin2 A + tan2 A

Solution:

Taking L.H.S,

(sec A – cos A)(sec A + cos A)

= (sec2 A – cos2 A)

= (1 + tan2 A) – (1 – sin2 A)

= sin2 A + tan2 A = RHS

– Hence Proved


(cos A + sin A)2 + (cosA – sin A)2 = 2

Solution:

Taking L.H.S,

(cos A + sin A)2 + (cosA – sin A)2

= cos2 A + sin2 A + 2cos A sin A + cos2 A – 2cosA.sinA

= 2 (cos2 A + sin2 A) = 2 = R.H.S

– Hence Proved


(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

Solution:

Taking LHS,

(sin A + cosec A)2 + (cos A + sec A)2

= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2cos A sec A

= (sin2 A + cos2 A ) + cosec2 A + sec2 A + 2 + 2

= 1 + cosec2 A + sec2 A + 4

= 5 + (1 + cot2 A) + (1 + tan2 A)

= 7 + tan2 A + cot2 A = RHS

– Hence Proved


sec2 A. cosec2 A = tan2 A + cot2 A + 2

Solution:

Taking,

RHS = tan2 A + cot2 A + 2 = tan2 A + cot2 A + 2 tan A. cot A

= (tan A + cot A)2 = (sin A/cos A + cos A/ sin A)2

= (sin2 A + cos2 A/ sin A.cos A)2 = 1/ cos2 A. sin2 A

= sec2 A. cosec2 A = LHS

– Hence Proved


 cot2 A – 1/sin2 A + 1 = 0

Solution:

cot2 A – 1/sin2 A + 1 = 0

LHS = cot2 A – 1/sin2 A + 1

We know that

1/sin A = cosec A

= cot2 A – cosec2 A + 1

= (1 + cot2 A) – cosec2 A

We know that 1 + cot2 A = cosec2 A

= cosec2 A – cosec2 A

= 0

= RHS

Therefore, LHS = RHS.


1/(1 + tan2 A) + 1/(1 + cot2 A) = 1

Solution:

LHS = 1/(1 + tan2 A) + 1/(1 + cot2 A)

We know that

sec2 A – tan2 A = 1

sec2 A = 1 + tan2 A

cosec2 A – cot2 A = 1

cosec2 A = 1 + cot2 A

So we get

= 1/sec2 A + 1/cosec2 A

Here 1/sec A = cos A and 1/cosec A = sin A

= cos2 A + sin2 A

= 1

= RHS

Therefore, LHS = RHS.


If sin A + cosec A = 2; Find the value of sin2 A + cosec2 A.

Solution:

Given, sin A + cosec A = 2

On squaring on both sides, we have

(sin A + cosec A)2 = 22

sin2 A + cosec2 A + 2sinA. cosec A = 4

sin2 A + cosec2 A + 2 = 4 [As sin A. cosec A = sin A x 1/sin A = 1]

sin2 A + cosec2 A = 4 – 2 = 2

Hence, the value of (sin2 A + cosec2 A) is 2


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that: x2 + y2 = m2 + n2 

Solution:

Taking RHS,

m2 + n2

= (x cos A + y sin A)2 + (x sin A – y cos A)2

= x2 cos2 A + y2 sin2 A + 2xy cos A sin A + x2 sin2 A + y2 cos2 A – 2xy sin A cos A

= x2 (cos2 A + sin2 A) + y2 (sin2 A + cos2 A)

= x2 + y2 [Since, cos2 A + sin2 A = 1]

= RHS


If m = a sec A + b tan A and n = a tan A + b sec A, prove that m2 – n2 = a2 – b2

Solution:

Taking LHS,

m2 – n2

= (a sec A + b tan A)2 – (a tan A + b sec A)2

= a2 sec2 A + b2 tan2 A + 2 ab sec A tan A – a2 tan2 A – b2 sec2 A – 2ab tan A sec A

= a2 (sec2 A – tan2 A) + b2 (tan2 A – sec2 A)

= a2 (1) + b2 (-1) [Since, sec2 A – tan2 A = 1]

= a2 – b2

= RHS


 If sin θ + cosec θ = 2, find the value of sin2 θ + cosec2 θ.

Solution:

It is given that

sin θ + cosec θ = 2

sin θ + 1/sin θ = 2

By further calculation

sin2 θ + 1 = 2 sin θ

sin2 θ – 2 sin θ + 1 = 0

So we get

(sin θ – 1)2 = 0

sin θ – 1 = 0

sin θ = 1

Here

sin2 θ + cosec2 θ = sin2 θ + 1/sin2 θ

Substituting the values

= 12 + 1/12

= 1 + 1/1

= 1 + 1

= 2


If x = a cos θ + b sin θ and y = a sin θ – b cos θ, prove that x2 + y2 = a2 + b2.

Solution:

It is given that

x = a cos θ + b sin θ …. (1)

y = a sin θ – b cos θ …. (2)

By squaring and adding both the equations

x2 + y2 = (a cos θ + b sin θ)2 + (a sin θ – b cos θ)2

Using the formula

(a + b)2 = a2 + b2 + 2ab and (a – b)2 = a2 + b2 – 2ab

= [(a cos θ)2 + (b sin θ)2 + 2 (a cos θ) (b sin θ)] + [(a sin θ)2 + (b cos θ)2 – 2 (a sin θ) (b cos θ)]

By further calculation

= a2 cos2 θ + b2 sin2 θ + 2 ab sin θ cos θ + a2 sin2 θ + b2 cos2 θ – 2 ab sin θ cos θ

= a2 cos2 θ + b2 sin2 θ + a2 sin2 θ + b2 cos2 θ

So we get

= a2 (cos2 θ + sin2 θ) + b2 (sin2 θ + cos2 θ)

Here sin2 θ + cos2 θ = 1

= a2 (1) + b2 (1)

= a2 + b2

Therefore, x2 + y2 = a2 + b2.


 If 2 cos θ = √3, prove that 3 sin θ – 4 sin3 θ = 1.

Solution:

It is given that

2 cos θ = √3

cos θ = √3/2

We know that

sin2 θ = 1 – cos2 θ

Substituting the values

sin2 θ = 1 – (√3/2)2

sin2 θ = 1 – 3/4

sin2 θ = ¼

sin θ = √ 1/4 = 1/2

Consider

LHS = 3 sin θ – 4 sin3 θ

It can be written as

= sin θ (3 – 4 sin2 θ)

Substituting the values

= 1/2 (3 – 4 × ¼)

= 1/2 (3 – 1)

= 1/2 × 2

= 1

= RHS

Therefore, proved.


 If sin θ + cosec θ = 10/3, find the value of sin2 θ + cosec2 θ.

Solution:

It is given that

sin θ + cosec θ = 10/3

By squaring on both sides

(sin θ + cosec θ)2 = (10/3)2

Expanding using formula (a + b)2 = a2 + b2 + 2ab

sin2 θ + cosec2 θ + 2 sin θ cosec θ = 100/9

We know that sin θ = 1/cosec θ

sin2 θ + cosec2 θ + 2 sin θ × 1/ sin θ = 100/9

By further calculation

sin2 θ + cosec2 θ + 2 = 100/9

sin2 θ + cosec2 θ = 100/9 – 2

Taking LCM

sin2 θ + cosec2 θ = (100 – 18)/9 = 82/9

So we get

sin2 θ + cosec2 θ = 82/9


Prove that : tan A + cot A = sec A cosec A 

Solution:

L.H.S. = tan A + cot A

= sin A/cos A + cos A/sin A

= (sin2 A + cos2 A)/ (sin A cos A)

= 1/ (sin A cos A)

= sec A cosec A

= R.H.S


Prove that : (1 + tan A)2 + (1 – tan A)2 = 2 sec2 A

Solution:

L.H.S. = (1 + tan A)2 + (1 – tan A)2

= 1 + 2 tan A + tan2 A + 1 – 2 tan A + tan2 A

= 2 + 2 tan2 A

= 2(1 + tan2 A) [As 1 + tan2 A = sec2 A]

= 2 sec2 A

= R.H.S.


Prove that : secA + cosec2 A = sec2 A. cosec2 A

Solution:

L.H.S = secA + cosec2 A

= 1/cos2 A + 1/sin2 A

= (sin2 A + cos2 A)/ (sin2 A cos2 A)

= 1/ (sin2 A cos2 A)

= sec2 A cosec2 A = R.H.S


Prove that : cosec4 θ – cosec2 θ = cot4 θ + cot2 θ 

Solution:

L.H.S. = cosec4 θ – cosec2 θ

= cosec2 θ (cosec2 θ – 1)

= cosec2 θ cot2 θ [cosec2 θ – 1 = cot2 θ]

= (cot2 θ + 1) cot2 θ

= cot4 θ + cot2 θ

= R.H.S.


Prove that : 2 sec2 θ – sec4 θ – 2 cosec2 θ + cosec4 θ = cot4 θ – tan4 θ.

Solution:

L.H.S. = 2 sec2 θ – sec4 θ – 2 cosec2 θ + cosec4 θ

= 2 (tan2 θ + 1) – (tan2 θ + 1)2 – 2 (1 + cot2 θ) + (1 + cot2 θ)2

= 2 tan2 θ + 2 – (tan4 θ + 2 tan2 θ + 1) – 2 – 2 cot2 θ + (1 + 2 cotθ + cot4 θ)

= 2 tan2 θ + 2 – tan4 θ – 2 tan2 θ – 1 – 2 – 2 cot2 θ + 1 + 2 cotθ + cot4 θ

= cot4 θ – tan4 θ = R.H.S.


Prove that : sec4 A – tan4 A = 1 + 2 tan2 A

Solution:

sec4 A – tan4 A = 1 + 2 tan2 A

L.H.S. = sec4 A – tan4 A

= (sec2 A – tan2 A) (sec2 A + tan2 A)

= (1 + tan4 A – tan4 A) (1 + tan4 A + tan4 A) [As sec2 A = tan4 A + 1]

= 1 (1 + 2 tan2 A)

= 1 + 2 tan2 A = R.H.S.


 If 7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°, then find the value of θ.

Solution:

Given,

7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°

3 sin2 θ + 3 cos2 θ + 4 sin2 θ = 4

3 (sin2 θ + 3 cos2 θ) + 4 sin2 θ = 4

3 (1) + 4 sin2 θ = 4

4 sin2 θ = 4 – 3

sin2 θ = ¼

Taking square-root on both sides, we get

sin θ = ½

Thus, θ = 30o


If sec θ + tan θ = m and sec θ – tan θ = n, prove that mn = 1.

Solution:

Given,

sec θ + tan θ = m

sec θ – tan θ = n

Now,

mn = (sec θ + tan θ) (sec θ – tan θ)

= sec2 θ – tan2 θ = 1

Thus, mn = 1


 If x = h + a cos θ and y = k + a sin θ, prove that (x – h)2 + (y – k)2 = a2.

Solution:

Given,

x = h + a cos θ

y = k + a sin θ

Now,

x – h = a cos θ

y – k = a sin θ

On squaring and adding, we get

(x – h)2 + (y – k)2 = a2 cos2 θ + a2 sin2 θ

= a(sin2 θ + cos2 θ)

= a2 (1) [Since, sin2 θ + cos2 θ = 1]

– Hence proved


Prove that : sin2 θ + cos4 θ = cos2 θ + sin4 θ 

Solution :

sin2 θ + cos4 θ = cos2 θ + sin4 θ

L.H.S. = sin2 θ + cos4 θ

= (1 – cos2 θ) + cos4 θ

= cos4 θ – cos2 θ + 1

= cos2 θ (cos2 θ – 1) + 1

= cos2 θ (- sin2 θ) + 1

= 1 – sin2 θ cos2 θ

Now,

R.H.S. = cos2 θ + sin4 θ

= (1 – sin2 θ) + sin4 θ

= sin4 θ – sin2 θ + 1

= sin2 θ (sin2 θ – 1) + 1

= sin2 θ (-cos2 θ) + 1

= 1 – sin2 θ cos2 θ

Hence, L.H.S. = R.H.S.


Prove that : 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = 0

Solution:

Given,

2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = 0

L.H.S. = 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1

= 2 [(sin2 θ)3 + (cos2 θ)3] – 3 (sin4 θ + cos4 θ) + 1

= 2 [(sin2 θ + cos2 θ) (sin4 θ + cos4 θ – sin2 θ cos2 θ)] – 3 (sin4 θ + cos4 θ) + 1

= 2 (sin4 θ + cos4 θ – sin2 θ cos2 θ) – 3 (sin4 θ + cos4 θ) + 1

= 2 sin4 θ + 2 cos4 θ – 2 sin2 θ cos2 θ – 3 sin4 θ – 3 cos4 θ + 1

= 1 – sin4 θ – cos4 θ – 2 sin2 θ cos2 θ

= 1 – [sin4 θ + cos4 θ + 2 sin2 θ cos2 θ]

= 1 – 1

= 0 = R.H.S.


When 0° < θ < 90°, solve the following equations: 

(i) 2 cos2 θ + sin θ – 2 = 0 

(ii) 3 cos θ = 2 sin2 θ 

(iii) sec2 θ – 2 tan θ = 0 

(iv) tan2 θ = 3 (sec θ – 1).

Solution:

Given, 0° < θ < 90°

(i) 2 cos2 θ + sin θ – 2 = 0

2 (1 – sin2 θ) + sin θ – 2 = 0

2 – 2 sin2 θ + sin θ – 2 = 0

– 2 sin2 θ + sin θ = 0

sin θ (1 – 2 sin θ) = 0

So, either sin θ = 0 or 1 – 2 sin θ = 0

If sin θ = 0

⇒ θ = 0o

And, if 1 – 2 sin θ = 0

sin θ = ½

⇒ θ = 30o

Thus, θ = 0o or 30o

(ii) 3 cos θ = 2 sin2 θ

3 cos θ = 2 (1 – cos2 θ)

3 cos θ = 2 – 2 cos2 θ

2 cos2 θ + 3 cos θ – 2 = 0

2 cos2 θ + 4 cos θ – cos θ – 2 = 0

2 cos θ (cos θ + 2) – 1(cos θ + 2)

(2 cos θ – 1) (cos θ + 2) = 0

So, either 2 cos θ – 1 = 0 or cos θ + 2 = 0

If 2 cos θ – 1 = 0

cos θ = ½

⇒ θ = 60o

And, for cos θ + 2 = 0

⇒ cos θ = -2 which is not possible being out of range.

Thus, θ = 60o

(iii) sec2 θ – 2 tan θ = 0

(1 + tan2 θ) – 2 tan θ = 0

tan2 θ – 2 tan θ + 1 = 0

(tan θ – 1)2 = 0

tan θ – 1 = 0

⇒ tan θ = 1

Thus, θ = 45o

(iv) tan2 θ = 3 (sec θ – 1)

(sec2 θ – 1) = 3 sec θ – 3

sec2 θ – 1 – 3 sec θ + 3 = 0

sec2 θ – 3 sec θ + 2 = 0

sec2 θ – 2 sec θ – sec θ + 2 = 0

sec θ (sec θ – 2) – 1 (sec θ = 2) = 0

(sec θ – 1) (sec θ – 2) = 0

So, either sec θ – 1 = 0 or sec θ – 2 = 0

If sec θ – 1 = 0

sec θ = 1

⇒ θ = 0o

And, if sec θ – 2 = 0

sec θ = 2

⇒ θ = 60o

Thus, θ = 0or 60o


💡 Do You Know?

  • The values of trigonometric ratios are exact for 0°, 30°, 45°, 60°, and 90°.
  • These ratios are frequently used in geometry, physics, astronomy, and engineering.
  • The identities like sin²θ + cos²θ = 1 help derive all other formulas in trigonometry.

📘 Quick Summary Table

Anglesincostanseccoseccot
0101
30°1/2√3/21/√32/√32√3
45°1/√21/√21√2√21
60°√3/21/2√322/√31/√3
90°1010

Trigonmetric Identities Table Summary

Identities NameIdentities
 Pythagorean Identitiessin2θ + cos2θ = 1
1 + tan2θ = sec2θ
1 + cot2θ = cosec2θ
 Reciprocal Identitiescosec θ = 1/sin θ 
sec θ = 1/cos θ
cot θ = 1/tan θ 
 Quotient Identitiestan θ = sin θ/cos θ
cot θ = cos θ/sin θ

RELATED POST